If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+28=84
We move all terms to the left:
7y^2+28-(84)=0
We add all the numbers together, and all the variables
7y^2-56=0
a = 7; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·7·(-56)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*7}=\frac{0-28\sqrt{2}}{14} =-\frac{28\sqrt{2}}{14} =-2\sqrt{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*7}=\frac{0+28\sqrt{2}}{14} =\frac{28\sqrt{2}}{14} =2\sqrt{2} $
| x-13/63=96 | | 17w=8w+45 | | 5x=3/25 | | 10x-3+21x+4+84=90 | | 10x-3+21x+4+84=180 | | y/5=-51 | | 4^4a-1=64^a | | 10a-50°+50°-a=180° | | 5x^2/3=320 | | P(8,r)=6720 | | A+b=192 | | 5x^-2=405 | | 75=x+(x*1.4) | | 8x+74=6 | | 12b=38 | | (1-3x)=2 | | y²-24y-96=0 | | 3b-42=0 | | 3x-7=3(11x-2) | | 7(x-4)+4x=5 | | (5-7x)(x+1)=(x+1)(3-5x) | | 2x-1=-3x-21 | | 13x+23=9x+27 | | 3x(X+1)=96 | | P=2x²+x-7 | | 14x+23=9x+27 | | 5x+32=102 | | 10000=10x10 | | 4x^2-4000x-60000=0 | | x3–9x2+24x–13=0. | | x3–9x2+24x–13=0 | | 105=9x+5 |